How Long Will An Inkjet Print Last?

Inkjet printing continues to improve in quality and affordability, but the questions over print life persist. Trevern Dawes examines the situation, outlines the current accelerated fade testing methods and summarises the practices recommended to promote maximum print life.

Hewlett Packard’s new generation of DesignJet large format printers employ a six colour printing system which is claimed to give a print life of 70 years when using HP’s No.88 dye-based inks.

IN 1826 A Frenchman called Joseph Nicéphore Niépce produced what is generally regarded as the world’s first fixed photograph. It was a crude bitumen plate requiring an exposure of eight hours, but from this point on, imaging technology has made significant advances right up to the current era of digital photography. Some of the earliest photographs have survived in pristine condition because of the care taken in their production, the nature of the materials used and, most importantly, the way they have been stored.

When it comes to digital prints the same criteria of production processes, materials used and storage methods come into play. Longevity has become a key issue, not just because of the need for gallery patrons to be confident their purchases won’t disappear overnight, but because we would all like to believe that what we create now in inkjet form is going to endure for a very long time.

When inkjet printing first arrived there was very little emphasis on print life. The prints faded quite rapidly so, even with all due care in display, some signs of degradation were evident within months, if not weeks. The technology has since made remarkable progress to the point where both pigment and some dye-based inkjet prints are claimed to have display life spans that match or exceed photographic colour prints.

In order to predict how long any particular combination of ink and paper will last, or any photographic production for that matter, you need to be aware of what causes deterioration and what methods are employed to fast track and measure fading.

Light Damage
Prints will fade by the action of light and humidity, chemical interaction within the...
ink or substrate (i.e. the paper support) and chemical action from the atmosphere.

All forms of light emit heat and radiation to varying degrees. The light that allows you to make photographs is also the light that destroys the printed images. We all appreciate how rapidly any photograph can fade in sunlight and are sensible enough to avoid direct or reflected exposure, not just for permanent wall display, but also for casual print or album viewing.

While other light sources aren’t nearly as damaging, they all have some detrimental effect so it useful to understand their characteristics. Incandescent tungsten lamps, as used in many domestic situations, have a low ultraviolet (UV) output, but still emit infrared radiation in the form of heat. Consequently, an optimum distance between print and light source needs to be established to avoid any heat-related problems. Tungsten halide bulbs are more efficient than incandescent bulbs, but also generate high UV levels. Fluorescent light sources are cold yet still emit higher than acceptable levels of UV radiation. However, because they last a long time and are relatively cheap to run they are very widely used.

The potential damage that any source of light may inflict upon a displayed print can be minimised by the use of glass.

Measuring Deterioration
You can, of course, attempt to run your own tests by comparing the outcome of simply placing one copy of a print in a sunny location while another copy is stored in a dark place. Any colour print from either a darkroom or an inkjet printer will fade quickly when exposed to direct sunlight. This approach doesn’t prove much at all and is certainly not a true indicator of print life.

Initially, the lightfastness of inks used in the general printing industry was evaluated by comparison with a permanent bright red pigment called ‘crimson madder’. The ‘Blue Wool Scale’ was introduced later as an International Standard (ISO). This consisted of samples of blue wool dyes, with a value of ‘B’ being regarded as permanent. The remaining seven dyes make up the scale. The longevity of any print might then be assessed against the scale, but there is much more to testing than the concept of exposing half the print to light for a specified time and noting the fade against the scale.

By introducing a powerful artificial light source under controlled conditions, the fading process can be accelerated and reasonably accurate long-term predictions made within a very short time. Xenon filled discharge lamps have a continuous light spectrum and these have completely replaced the original arc lamps used for fade testing.

The criteria used by one organisation to examine fading may not necessarily be the same as another, hence any comparisons made must be considered within the same testing conditions. For example, Wilhelm Imaging Research Inc. in the USA adopts white fluorescent light at 30,000 lux and assumes a one-day illumination to be 450 lux for 12 hours. Epson and Canon apply 70,000 lux and rate their one-day illumination as 500 lux for ten hours. In all cases testing is conducted in a controlled environment of 24 degrees Celsius and a relative humidity of 60 percent, and all printed colour patches are housed under 2.0 mm glass.

Fading is deemed to have occurred when density of a colour is under 70 percent of the original (i.e. the optical density is measured by densitometer to have fallen from 1.0 to 0.7). By using the outcomes of these tests, a projection can be made to predict the display life of the ink/paper combination. If, using one of Epson’s tests, the print sample papers are more susceptible to air fade than swellable papers.

High levels of gelatine in silver-halide coatings are susceptible to the growth of microorganisms in the presence of high humidity, whereas colorants in inkjet prints tend to migrate, resulting in a shift in colour or reduced sharpness.

Chemicals or impurities in paper will yellow or stain when subjected to light or heat. This can be a problem for silver-halide because chemical traces remain in the paper after processing. There is less concern about inkjet prints, provided the paper used is pH neutral, or, better still, acid-free.

Organisations like Wilhelm Research adopt uniform standards and consider the ‘dark fade’ factors as well as the light fade factors. If ‘dark fade’ testing cannot be readily achieved, at least footnotes are included with assessments to explain that

The tests applied to evaluate print life tend to concentrate on lightfastness, yet other factors, not as easy to measure, such as heat, humidity and air quality also contribute to the life of a print. These factors take effect even when a print is stored in the dark and are general described as ‘darkfastness’ characteristics.

took 24 hours for 153 days before the OD reached 0.7, the total intensity would be 25,704 x 104 lux (i.e. 70,000 lux x 24 hours x 153 days). The 25,704 x 104 lux (500 lux x 10 hours x 365 days) delivers a result of 140.8 years to give a rounded prediction of 140 years.

Other Factors
The tests applied to evaluate print life tend to concentrate on lightfastness, yet other factors, not as easy to measure, such as heat, humidity and air quality also contribute to the life of a print. These factors take effect even when a print is stored in the dark and are general described as ‘darkfastness’ characteristics.

Some combinations of ink and paper may rate well yet can be highly sensitive to ambient levels of ozone. It’s interesting to note that the deterioration caused by contact with airborne gases and contaminants such as ozone will generally not effect silver-halide prints because the sensitive emulsions reside under a protective layer. The type of coating applied to an inkjet print will determine how ‘dark fade’ takes effect. Research has shown that porous photo print deterioration can occur other than by the direct action of light.

There is reason to be cautious about some claims derived by accelerated lightfast testing because of the phenomenon known as the Law of Reciprocity. Essentially this infers that relatively short exposures to very powerful lighting will not be the same as very long exposure to normal lighting. If a test print is deemed to have faded in lighting 100 times as intense as normal lighting can it then be assumed the same print will fade equally in 1/100th of the time under normal lighting?

The assumed level of ambient lighting also comes into play. If an average home has a light intensity of about 100 to 200 lux and most commercial premises of 450 lux, what ought to be accepted as being a ‘typical’ day for evaluation purposes? The intensity of the light therefore has a profound effect. In endeavouring to make your own assessments you need to consider your type of ‘standard day’ and take into account that some home or private galleries may only be illuminated for short periods.

As a general guide it can be assumed you will maximise the life of your prints if
you choose pigment-based inks and non-acid papers, but in doing so you may not be pursing the best way of making prints. Dyes do provide better colour gamut and brightness than pigments or pigmented inks, but they don’t have the same longevity characteristics.

Inkjet printers operate with either dyes or pigments. Some larger format printers will function with either, provided clean out cycles are used when changing from one type of ink to another. The six, seven or eight colour systems offer advantages over four colour printing because they allow more subtle tones to be reproduced. The seventh or eighth “colour” is a light black or a ‘grey component replacement’ which is designed to minimise metamerism. It is particularly helpful in the printing of black and white images.

Testing Times
Should you be looking for highly detailed scientific explanations of fade testing, visit www.wilhelm-research.com and download the report entitled “The Permanence and Care of Color Photographs, Traditional and Digital Color Prints, Color Negatives, Slides and Motion Pictures...” The entire document runs to 758 pages!

From among all this technical wizardry what can be assumed? You may be sceptical or you may be encouraged, but whatever your reaction, you can benefit from the assumption that the predicted values are relative to each other. All things being equal in the testing department, and what transpires thereafter in terms of display or storage, we might then observe that one

unless some real figures are offered. In presenting any ratings it’s important to appreciate that, as research continues, more accurate assessments might be forthcoming. All findings come with a convenient disclaimer indicating that display and storage conditions employed in the ‘real world’ are too variable to have ratings backed with guarantees.

For the products readily available in Australia here is a short listing for prints displayed under glass. Take this as a guide and not as gospel. Most of these ratings are provided by the Wilhelm Research Institute.

Epson Ultrachrome pigmented inks
March 2004 (Wilhelm)
- Epson Premium Gloss 85 years
- Epson Premier Lustre 71 years
- Epson Premier Semi-Matte 67 years
- Epson Ultrasmooth Fine Art 108 years

Epson pigment inks
(on an Epson 2000P printer)
- Epson Premium Semi-Gloss 140 years
- Glossy Photo Weight 180 years
- Watercolour Radiant White 200 years
- Archival Matte 200 years

Epson six colour dyes
(on 780/870/890/1270/1290 printers)
- Epson Heavyweight Matte 26 years
- Epson Glossy Photo 10 years

HP Designjet 5550 and DesignJet 130
(six colour dyes)
- HP Premium 73 years

Canon dye ink
April 2004 (Canon)
- No paper given 25 years

The characteristics of the paper used in inkjet printing have a profound effect on print life, especially with dyes. The accelerated light fading tests essentially examine the behaviour of inks, yet the type of paper used can also affect longevity results.
Quality Questions

The ratings for pigment and pigmented inks are appreciably higher than those of dyes. What is not mentioned in all these assessments is quality. That is to say that dyes have noticeably higher colour gamut, brightness and richer blacks than pigments. What dyes may lack in longevity they make up for with that highly subjective characteristic called ‘quality’ and much of this can be attributed to the depths of the dye blacks.

A high level of light stability has been achieved in the new six colour set and papers incorporated in the HP Designjet 5550 and now the Designjet 130/130NR models. These ratings are highly significant because it means pigments are no longer alone in the high rating charts.

As a matter of comparison for the darkroom produced colour prints, the ratings for Ilfochrome is 29 years and for Fujifilm’s Archival Crystal paper it's 70 years. Most of the RA-4 process colour photographic papers range from 14 to 18 years.

Preservation Methods

For most of us there are differences between what can be classified as ‘ideal’ conditions of storage and display, and what is actually practical. The “ideal” declare the rate of deterioration in a print can be limited or slowed down by exposing prints to light only when necessary or by ensuring the light is not too bright and that UV radiation is removed.

High temperatures and high humidity play significant roles in print degradation, but unfortunately we cannot always constantly apply air conditioning and dehumidifiers to our environments, let alone do a “Bill Gates” and consign all our work to sub-zero storage.

Deep inside mountains. The family deep freeze may well be the answer, but because refrigerators produce moisture all print/film packages would need to be sealed in airtight containers.

By displaying prints under glass and well away from direct sunlight you will at least provide the best conditions for display. If you want to preserve the same image then you should probably simply make a second copy and lock it away from light, heat, humidity and air movement as best you can.

Avoid storing prints near chemicals (especially in a darkroom) and keep them well away from ozone sources such as television, computer monitors, air conditioners or any source of high voltage.

Ordinary glass, in windows and pictures frames, will block the most damaging high-frequency, longer wavelength ultraviolet radiation associated with daylight. Lower frequency ranges are not blocked. Artificial light, particularly tungsten incandescent bulbs or low-UV emitting fluorescent tubes, is much preferred to daylight. The exclusion of sunlight is the most critical factor.

Lamination of a print via UV-absorbing film, acrylic sheets or lacquers may enhance longevity but care must be exercised because some laminates can cause more harm than good. Adhesives used in the mounting and presentation of prints can also have adverse effects in the long term.

Display prints are best presented under glass in a properly sealed frame. The glass is an UV inhibitor and acts as a barrier against contaminants in the air. Avoid print framing in high humidity conditions and always allow prints at least a day to dry before framing.

Prints intended for storage need to be housed in acid-free containers. If an album is preferred avoid adhesives via the use of acid-free sleeves or old-fashioned invisible corners and ensure the album is rated as being made of archival materials.

Real World Values

So much for all the technicalities, but where do we stand? We can look at the ratings supplied by various organisations and try to reach some sort of conclusion, even if we choose to adopt a very conservative approach and decide to cut the values in half.

Apart from galleries and museums, few of us will have ideal conditions for storage and display, so the predictions available can only be taken as guidelines. This is to say our prints may have quite different ‘lifestyles’ so, if display prints are not subjected to ten hours of light per day, they may indeed endure far longer than predicted.

Those other factors of variable temperatures and humidity levels, plus unknown responses to ozone contamination may indeed shorten print life.

As you are now aware of all the factors that contribute to print degradation you can, at least, take all due diligence in display and storage conditions. The life of a display print will therefore be enhanced by placing it behind glass using neutral pH framing materials in a relatively cool, dry area with low levels of UV illumination. Otherwise prints belong in albums and archival storage containers, once again in a cool, dry area.

How long will these prints last? How long is a piece of string? Who knows, but you can be assured there will be no need for re-prints for many years if you select the appropriate materials and take the necessary precautions for display and storage.
WIN SONY’S $7200 HD CAMCORDER KIT

January 2005 $6.50 NZ $9.50 (inc. GST)

CAMERA AUSTRALIA
film & digital for photographers

Buying Guide
Digital Cameras • Inkjet Printers • Film Scanners

11 REVIEWS

- Olympus E-300
- Nikon Coolpix 8400
- Sony HDR-FX1
- JVC Everio camcorders...
and much more

Online Photo Albums Made Easy

Make Your Inkjet Prints Last Longer
What's New
Making headlines this month are a pair of new digital lenses from Tamron, stylish digital subcompacts from Contax and a rapid charger from Varta. Plus we predict the likely camera hits of 2005.

Light Work
This series is designed to give an insight into how a professional photographer works. This month Adelaide-based commercial photographer Kevin O’Daly tells the story behind an award-winning aerial image.

Camera Crossword
Test your photographic knowledge with our quick crossword.

Digital Image Gallery
As part of our association with the Australian Digital Photo Of The Day competitions Website, we run a special monthly competition for Camera readers. Visit www.pdold.com.au and follow the links to the Camera Readers’ gallery. From there your image could well end up on these pages.

Konica Minolta/Fujifilm Showcase 2005
The 2005 Showcase is open for business so get those entries in as there’s lots of film to be won. The grand prize winner for 2004 is also announced in this issue.

Camera Buyer’s Checklist — Digital SLRs
Quite a few new models have arrived since we last published this listing including Olympus’ E-300 and the Pentax *ist DS. Published prices are supplied by the distributors, but may vary at retail outlets due to special offers, discounting and other factors.

Features
18 Feature — How To Buy...
To kick off 2005 we’ve put together a buyer’s guide to help you make the right decisions about purchasing a digital SLR, a digital compact or preset camera, a film scanner or a photo-quality inkjet printer.

28 Photogenic Places — Northern Exposure
Forget all the (and expensive) of international travel, Australia offers a huge selection of great locations for photography. This month Steve Howe takes us on a tour of the spectacular Kimberley region.

32 In Practice — Desert Storm
Sometimes you can be in the right place at the wrong time and still come home with great photographs. Treveres Dawes relates one such experience.

36 Feature — Photo Album Wizard
Digital photo album creation software is becoming more widely used among wedding photographers, but Photo Album Wizard has been designed for amateurs — and it’s a breeze to use as Paul Burrows explains.

38 Feature — How Long Will an Inkjet Print Last?
Inkjet printing technology has come a long way in the last few years in terms of both quality and affordability. Treveres Dawes looks at ways to ensure your prints enjoy a long life.

68 On Trial — Software Everywhere
Barrie Smith looks at some imaging software packages from a less well-known publisher.

74 Tutorial — Flying With Photoshop
These articles are designed to guide photographers through Photoshop’s main image-editing tools and functions. This month Tony Martorano looks at some of the technical support Adobe provides through its information services.

76 Field Notes — Digital Safari
Now thoroughly converted to digital capture, Tony Martorano puts the case for using a D-SLR for wildlife rather than a film camera.

78 Lightroom 2005 — Accurate Colour Made Easy
The Macbeth colour card was once standard reference tool for colour photography, now it’s been revived in a digital format. Tony Martorano explains how it works.

ON TRIAL
32 Olympus E-300 — eight megapixels D-SLR packed into a radically redesigned body
46 Nikon F6 — professional level 35mm SLR with all the bells and whistles
50 JVC Everio Camcorders — look Mum, no tape... JVC introduces the Microdrive camcorder
53 HP Photosmart B4350 — A4 inkjet printer with 4800 dpi optimised resolution and lots of features
54 Nikon Coolpix 4500 — the first prosumer digital camera with a wide-angle zoom
56 Olympus CamEDIA C-70 — tiny snapper with a good feature set and great price
57 Casio Exilim EX-K100 — super slim body incorporating the world’s first ceramic element lens
58 Olympus P70 — compact and affordable camera-direct dye-sub printer
60 Lexmark SnapShot S15 — portable inkjet printer with built-in multi-format card reader
62 Sony HandyCam HDR-FX1 — high definition video recording arrives in a semi-pro Mini DV camcorder
64 Sony Cyber-shot DSC-P150 — another seven megapixels powerhouse... in your pocket

Jan 2005
Vol. 02 Number 01
Camera magazine (formerly Australian Camera Enthusiast and Australian Digital Camera) is published monthly by Horwitz Publications Pty Ltd ACN 000 311 884
Sydney P.O. Box 92355, St Leonards, NSW 1590. Tel: 02-9901 8100. Fax: 02-9901 6198
Editor Paul Burrows Digital Editor Barrie Smith info@camera.com.au Art Director Marcella Barwood Designer Ben Kim Art Work Assistant Kate Haycock Group Production Manager Eric Muirre Advertising Traffic Claire Prosser Division Manager & National Advertising Sales Jim Prosser Advertising Sales Manager Samantha Klinger Reader Services Di Prosser Subscriber Services Tel: 02-9901 6111, Sydney Elsewhere: Freecall 1800 202 236 or Fax: 02-9901 6190 Administration Claire Prosser
Ad enquiries Tel: 02-9901 6100. The cover price of $6.50 is the minimum recommended retail price including GST.

This month’s wild image is courtesy of Tony Martorano. He describes the advantages of going digital on safari on page 76.

The magazine is printed in Australia by Quality Images. Distribution throughout Australia and New Zealand is by Scolmer & Grosh. Annual subscription. 32 issues for $98.40 incl. GST. post free in Australia. Overseas subscribers pay air mail, $71.15 incl. GST. Peri. payment to Subscriber Services, Dept. Camera Magazine, PO. Box 32005, St Leonards, NSW 1590, Freecall 1800 202 236 or Tel: 02-9901 6111. Whose of errors is taken in the printing of this magazine, the publishers and proprietors assume no responsibility for the errors arising thereon. ISBN 1445913257 © 2004